bypass digestion in the stomach and be bioavailable for uptake and distribution to the body’s cells. Additionally, colostrum must be soluble for free dispersion throughout the GI tract as well as be able to readily disperse in water or formula. Liposomal Delivery enhances the bioavailability, and extensive research shows that such an enhanced delivery method allows ingested bovine colostrum to achieve the intended results. When selecting a bovine colostrum supplement, look for one that is GMP certified, contains a standardized content of active components, is flash pasteurized without loss of effectiveness, and is derived from first-milking pastured cows.

Safety of Bovine Colostrum Supplements

No significant health risks have been reported during or after oral ingestion of immune milk or colostral preparations. Colostrum supplementation is generally regarded as a non-invasive intervention, and therefore, safe. Bovine colostrum is ideal for formula-fed infants or those with limited breast milk feeding (after potential casein allergy is ameliorated). Infants with specific health issues, such as pathogen-induced diarrhea, may have successful resolution without the side effects of pharmaceutical drugs.

[It is important that diagnosis and evaluation of chronic symptoms be determined by qualified health care professionals either natural health care practitioner or complimentary care physician. The above is not intended to diagnose or treat disease and the statements herein have not been evaluated by the Food and Drug Administration.]

This information is copyrighted and may not be reproduced without express permission from the Center for Nutritional Research.

This is a partial list of all 40 references for this article available at www.CenterforNutritionalResearch.org

Derscheid RJ, Ackermann MR. The innate immune system of the perinatal lung and responses to respiratory syncytial virus infection. *Veterinary Pathology* 2013;50(5):827-41.

Maternal milk offers passive protection to a newborn infant against enteric pathogens, primarily via the transfer of immunoglobulins and growth factors from mother to infant. The historical concept of `immune milk’ (the transfer of passive immunity via lacteal antibodies) dates back to the 1950’s. In the 1960’s, the underlying mechanisms of passive immunity were realized when the chemical structure of immunoglobulins was discovered. Later in the 1970’s, the secretory immune system was identified which gave way to the role of secretory antibodies in the prevention or treatment of enteric infections in mammals. Since the 1980’s, there has been considerable interest in utilizing antibodies from the milk and colostrum of heterologous species, particularly ruminants. Studies show that bovine antibodies can be effective in the prevention or treatment of human and animal diseases caused by enteropathogenic microbes (bacteria, viruses, protozoans, and fungi). Bovine colostrum is the most prevalent preparation available today, and it passes immunity to all the disease-causing pathogens that the cow has encountered in her lifetime, including the antibodies she received from her mother – a broad spectrum pharmacy. The efficacy of any bovine colostrum supplement is determined by the antimicrobial activity of the specific antibodies and complement factors, which must be preserved during the manufacturing process.

Bovine colostrum influences the immune system in two ways. First, by stimulating it to fight infection and second, to modulate it up or down depending on the most efficacious outcome. The newborn gut is unique in that it has not completed maturation at the time of birth and needs the growth factors and other components of colostrum to complete its development. Immunoglobulins are easily assimilated into the newborn’s body via the GI tract. Colostrum-LD® has been tested for the active antibodies against the following disease-causing microbes:

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Viruses</th>
<th>Fungus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus</td>
<td>Adenovirus</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Alphavirus</td>
<td></td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>Dengue virus</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Echovirus</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>Epstein-Barr virus</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Enterovirus 71</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Hantavirus</td>
<td></td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Hepatitis C virus</td>
<td></td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>Herpes viruses</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>HIV-1</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli O157:H7</td>
<td>Human Papilloma virus</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>Influenza</td>
<td></td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>Japanese encephalitis</td>
<td></td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Measles</td>
<td></td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>Polio virus</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>Respiratory syncytial virus</td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Rotavirus</td>
<td></td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>St. Louis virus</td>
<td></td>
</tr>
<tr>
<td>Vibrio cholera</td>
<td>West Nile virus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow fever virus</td>
<td></td>
</tr>
</tbody>
</table>
Common Conditions Affecting Infants and Young Children

Diarrhea
Diarrhea is especially lethal to infants and worldwide, it is the second leading cause of death in infants. Antibiotics are ineffective against virus-caused diarrhea, yet Colostrum-LD® has antibodies against many pathogens, including rotavirus which is very common in infants in young children. Chronic diarrhea caused by opportunistic Cryptosporidia and rotavirus is potentially fatal in children with AIDS because it causes muscle wasting and insufficient nutrient absorption in the gastrointestinal tract. The immunoglobulins in bovine colostrum help fight pathogens and IGF-1 increases muscle mass.

Respiratory Infections
Infants, particularly those born prematurely, are most susceptible to diseases affecting the lungs and respiratory tract because their immune systems are not fully developed. Respiratory Viral Syndrome (RVS) is a common cause of infant mortality in the first two years. With no effective vaccine available, the administration of RVS immune prophylaxis is a viable solution. Research shows that lactoferrin and Proline-Rich Polypeptides (PRPs) in colostrum block entry of the virus into cells, either by blocking cellular receptors, or by direct binding to the virus particles. Seasonal influenza is also a concern for infants and young children, and in the absence of vaccination, bovine colostrum is a viable alternative. Viralox® contains Proline-Rich Polypeptides (PRPs) and lactoferrin. This oral spray is easily administered to infants and young children. Colostrum-LD® can be added to infant formula, milk, applesauce, yogurt for easy ingestion at most ages.

Allergies (including Milk Allergy)
Approximately one out of twenty infants is unable to tolerate the caseins in cow’s milk/colostrum. Thus, cow’s milk should not be introduced into the diet until this allergy is alleviated, so as to avoid any potential adverse reactions. Proline-Rich Polypeptides (PRPs) in colostrum modulate the pro-inflammatory cytokines, which can help improve or eliminate symptomatology of both allergies and autoimmune diseases. Additionally, PRPs inhibit the overproduction of lymphocytes and T-cells and ameliorate the major symptoms observed in allergies and autoimmune conditions (pain, swelling and inflammation). Colostrum IC® (oral Immune Concentrate spray) is suited for children under two years of age who have not yet been exposed to either cow’s milk or cow’s colostrum.

Colostrum Supplementation: Literature Summary

Bovine colostrum supplementation has also been shown to be a useful method, in addition to known medical and psychological treatments, to increase the weight of children with nonorganic failure to thrive (Panahi Y, et al. 2010).

Oral lactoferrin (a component of Colostrum) prophylaxis reduces the incidence of late-onset sepsis in infants weighing less than 3.3 pounds and most effective in infants weighing less than 2.2 pounds (Pammi M, Abrams SA. 2011).

In a case study of a commercial hyperimmune bovine colostrum with potent anticytospordial activity, a four year old child with AIDS and severe cryptosporidiosis-associated diarrhea experienced significant clinical improvement in the diarrhea and permanent elimination of the parasite from the gut (Shield J, et al. 1993). In another case study of bovine colostrum, a three year old child with acute cryptosporidia caused diarrhea was treated and recovered within two weeks (Heaton P. 1990).

Lysozyme, which is added to formulas but found in colostrum naturally, is beneficial for the treatment of periodontitis and the prevention of tooth decay. Milk enriched with lysozyme has also been used to feed premature infants suffering from concomitant diseases. (Zimecki M, Artym J. 2005).

Growth Factors in Bovine Colostrum
Growth factors play an important role in maintaining the human body by stimulating cell growth, proliferation, differentiation and migration; responsible for repair of leaky gut epithelia; bone remodelling and maintenance; fracture repair; wound healing; increased collagen production; and growth of blood vessels into damaged areas. There is an increasing use of growth factors for the treatment of hematologic and oncologic diseases and cardiovascular diseases. The most significant growth factors in bovine colostrum for the infant/child’s benefit include: Insulin-like Growth Factor, Epithelial/Fibroblast Growth Factor, Transforming Growth Factor, and Vascular Endothelial Growth Factor.

Insulin-like Growth Factor I (IGF-1) – a protein hormone with a similar structure to insulin and a major growth factor that stimulates cell proliferation in wounds.
Insulin-like Growth Factor II (IGF-2) – a protein hormone with a similar structure to insulin and a major fetal growth factor; promotes growth during gestation.

Epithelial/Epidermal Growth Factor (EGF) – stimulates the proliferation and differentiation of epidermal cells, including the intestinal lining, to maintain gut integrity.

Transforming Growth Factor Beta 1 & 2 (TGF-β1, TGF-β2) – controls cell growth, proliferation, differentiation, and apoptosis; stimulates production of IgA by B lymphocytes; is a vital factor in skeletal growth, bone mass maintenance, and fracture healing.

Vascular Endothelial Growth Factor (VEGF) – creates new blood vessels during embryonic development and new blood vessels after injury.

Viralox® Immune Oral Spray (PRPs): Pediatric Practice-based Use - David M. Markowitz, M.D., Pediatrician

“We have just finished a review of our first 12 months Pediatric experience with PRPs and the review confirms our initial feelings. Eighty-eight children who used PRP daily at the recommended doses for six or more months were compared to the same aged and same sexed children who did not use PRP, and their illness and antibiotic use were compared. We found in this retrospective study a 74% reduction in reported illness and an 84% reduction in antibiotic use. Using any measure, these are very significant results. No untoward reactions were reported. We have started to review the costs of the illness/antibiotic saved by the use of PRP. Initial results indicate over $25,000 saved in the user group in medical care, office visits, and drug costs. Again, these results are of major consequence and show the use of PRPs not only improves the quality of life for the child and his/her family it makes sense economically. Soon we will be approaching Insurance Carriers to support the use of PRPs in our patients.”

Colostrum IC® (Immune Concentrate Oral Spray)

A world renown PhD and colostrum specialist recently explained the attenuation of cow’s milk allergy: “Since many infants are unable to tolerate caseins in cow’s milk, Colostrum IC® is recommended for two weeks prior to introducing cow’s milk or cow’s colostrum into the diet, particularly if the child is under two years of age. PRPs and growth factors in bovine colostrum modulate the casein sensitivity and restore homeostasis.”

A Case For Extended Breastfeeding

The newborn gut is unique in that it has not completed maturation at the time of birth and needs the growth factors and other components of the mother’s colostrum to complete its development. This incomplete development of the gut is of benefit to the newborn as it allows large proteins, such as immunoglobulins, to easily enter the body. Immunoglobulins in colostrum and mother’s milk bind to disease-causing pathogens on the mucosal surfaces of the GI tract, thereby preventing them from colonizing and causing infection. This modulation by the immune system creates passive immunity for the infant.

Early weaning or exclusive formula use deprives the child of the immunity provided by the mother. Immunoglobulins are not present in pasteurized milk or infant formula. Breastfeeding not only helps prevent disease in infants, but research shows that longer breastfeeding is associated with better mental health through childhood and into adolescence.

In modern times, the length of breastfeeding has been determined by social norms, mothers returning to the workplace, and the successful marketing of infant formulas. From 1900 to 1960, negative attitudes caused a significant decline in breastfeeding, however, the trend has been reversing. Experts now recommend that children be breastfed within one hour of birth (for mother’s colostrum), exclusively breastfed for the first six months, and subsequently breastfed until age two complimented with age-appropriate and nutritionally adequate foods.

A note about infant formulas: these are basically “junk food”. Although infant formulas contain protein, fats, carbohydrates, vitamins, and minerals, they contain none of living components present in bovine colostrum and mother’s milk. Formulas simply cannot provide protection against disease-causing pathogens which attack an infant’s immature immune system. If we rob children of these living components, bovine colostrum is the best substitute we presently have.

A note about breast milk sharing: a recent study showed that while good intentioned, 74% of breast milk samples purchased via the internet contained infectious bacteria and 21% contained cytomegalovirus (a herpes-type virus). Mothers can feel safe knowing that bovine colostrum is an alternative way to impart the “life-giving” substances without the potential risks of breast milk sharing.

When mothers discontinue breast feeding before the age of two, bovine colostrum supplementation is strongly recommended for continued support and growth of all body tissue for optimum development and health.

Liposomal Delivery & Standardization

To achieve the gastrointestinal benefits of bovine colostrum, it is crucial that the active components will